SANYO DENKI

SANNOTION for Food Machinery

Stepping Systems for Food Related Equipment

Stepping Motors Lineup with Focus on "Ease of Use"

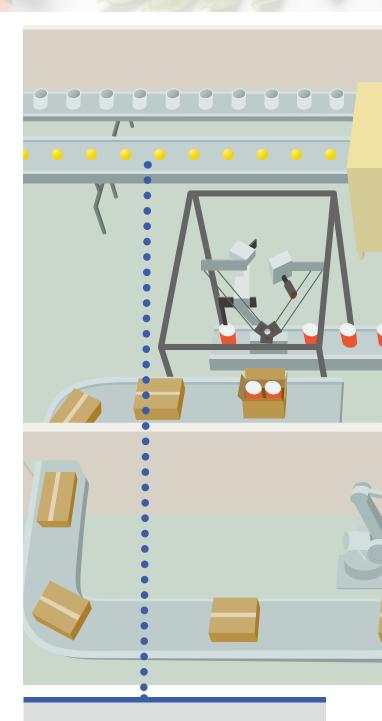
Our Stepping Motors Can Make Your Food Machinery

Stepping motors, despite their small sizes, have higher torques in low to middle speed ranges.
Synchronous motors start up smoothly, and are flexible to sudden speed changes.

1 Easy Control, and Operation with Stable Speed

• Can be driven solely by command inputs from host devices such as PLC. Furthermore, unlike induction motors, synchronous motors can maintain constant speed without being affected by varying loads, providing stable productivity.

2 Accurate Positioning and Precise Repetition

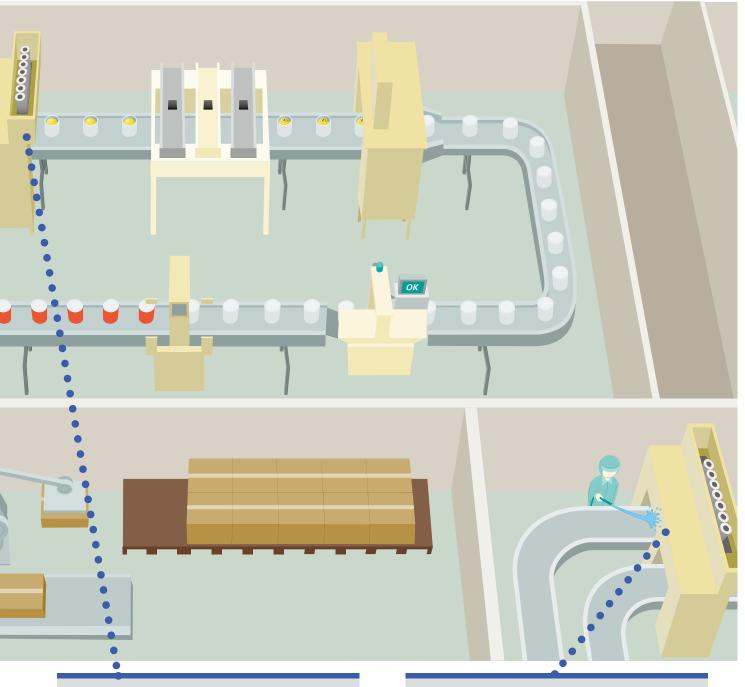

• The motor structure naturally enables accurate and precise repetitive positioning without sensors. Therefore the need for feedback from external sensors is eliminated, contributing to simplifying your system, and to stable and efficient operation.

3 Energy Efficiency

• Stepping motors are more eco-efficient, and hence contribute to reducing device power consumption.

4 Easy-to-Use Drivers and Options are Available

- The pulse-train input driver is compatible with host devices such as PLC by almost any manufacturer.
- \cdot Motors listed in this catalog can be driven by common drivers. \rightarrow p. 10
- Extension cables for driver and motor communication are available as options. \rightarrow p. 12


Hollow Shaft Stepping Motors For more information \rightarrow p. 4

Suitable usage

- · Conveyor motors
- Air piping for rotary mechanism

Easier to Use, Providing with Higher Performance

Heavy-Duty Hollow Shaft Stepping Motors For more information → p. 6

Suitable usage

 Simplification of rotary mechanism

Stepping Motors with IP65 Protection For more information → p. 8

Suitable usage

• Machines that operate in splash and dust environments

Hollow Shaft Stepping Motor 2-Phase

Features

Utilization of the hollow shaft structure provides greater design flexibility.

· The hollow shaft structure enables reducing power mechanism component

Options

- count and saving space by installing device shafts within it.
- · Cables and other likes can be routed through the holow hole.

Lineup

42_{mm sq.}, hollow hole diameter: 5 mm

56_{mm sq.}, hollow hole diameter: 10.9 mm

Compatible drivers

Model no.: BS1D200P10 (DC input) → p. 10

Model no. 1m : F2C02M0100A 2m : F2C02M0200A 3m : F2C02M0300A

Extension cable for driver and motor communication

Operating current selection switch setting: A (1 A/phase) for 103H5210-5249 0 (2 A/phase) for 103H7126-5747

Precautions on purchase

If to be used for driving circular tables or the like, for which large load inertia is exerted on the motor, it might take longer for the load to stop.


Precautions on use

- · Protection rating for this product is IP40. If to be used in moist or dust environments, please take protective measures beforehand.
- Allowable load values for this product are shown below. Please ensure that loads do not exceed the below values. 42 mm sq.: Allowable thrust load = 10 N, Allowable radial load = 193 N 56 mm sq.: Allowable thrust load = 15 N, Allowable radial load = 481 N
- Please keep the length of extension cable between motor and driver no longer than 3 m, considering voltage drops.

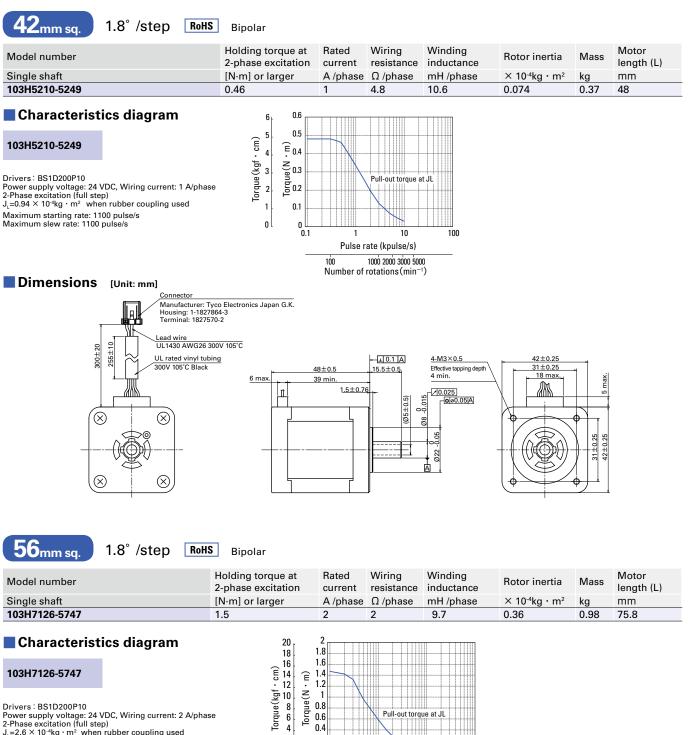
Hollow hole usage 1.

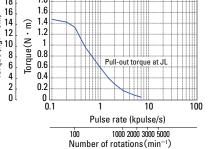
Motors can be installed inside of conveyor systems, with conveyor roller shafts mounted within the motor hollow holes.

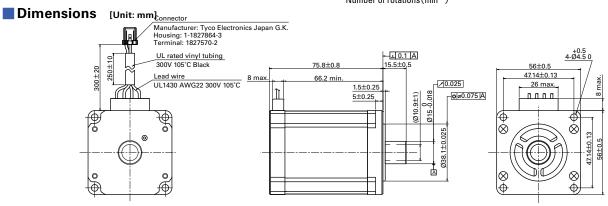
Conventionally Motor had to be installed outside the conveyor.

Hollow shaft motor Can accommodate conveyor roller shaft within the hollow hole, saving space.

Hollow hole usage 2.


By simplifying the system, it contributes to reducing the device size.


Hollow shaft motor


Gases, fluid, hoses and other likes can be routed through the hollow hole.

SANMOTION for Food Machinery

Drivers : BS1D200P10 Power's DSTD200F10 Power supply voltage: 24 VDC, Wiring current: 2 A/phase 2-Phase excitation (full step) J_1 =2.6 × 10⁻⁴kg · m² when rubber coupling used Maximum starting rate: 750 pulse/s Maximum slew rate: 750 pulse/s

Heavy-Duty Hollow Shaft Stepping Motor 2-Phase

Features

The allowable thrust load of this stepping motor is 37* times that of our conventional product. It is ideal in usage where large loads are exerted on motors.

* Comparing 370 N with 10 N, value for our conventional 42 mm sq. motor

📕 Lineup

For **42**_{mm sq.,} Allowable thrust load: 370 N (approx. 37 kg)

For $60_{mm sq.}$ Allowable thrust load: 450 N (approx. 45 kg)

Compatible drivers

Model no.: BS1D200P10 (DC input) → p. 10

Options

Extension cable for driver and motor communication Model no. 1m : F2C02M0100A

2m : F2C02M0200A 3m : F2C02M0300A

0 (2 A/phase) for SL2603-5741

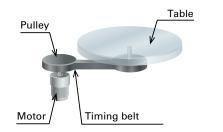
Precautions on purchase

it might take longer for the load to stop.

Precautions on use

- Protection rating for this product is IP40. If to be used in moist or dust environments, please take protective measures beforehand.
- Allowable load values for this product are shown below. Please ensure that loads do not exceed the below values. For 42 mm sq., Allowable thrust load: 370 N
- For 60 mm sq., Allowable thrust load: 450 N

 Please keep the length of extension cable between motor and driver no longer than 3 m, considering voltage drops.


Operating current selection switch setting: A (1 A/phase) for SL2423-5241

Simplification of mechanism

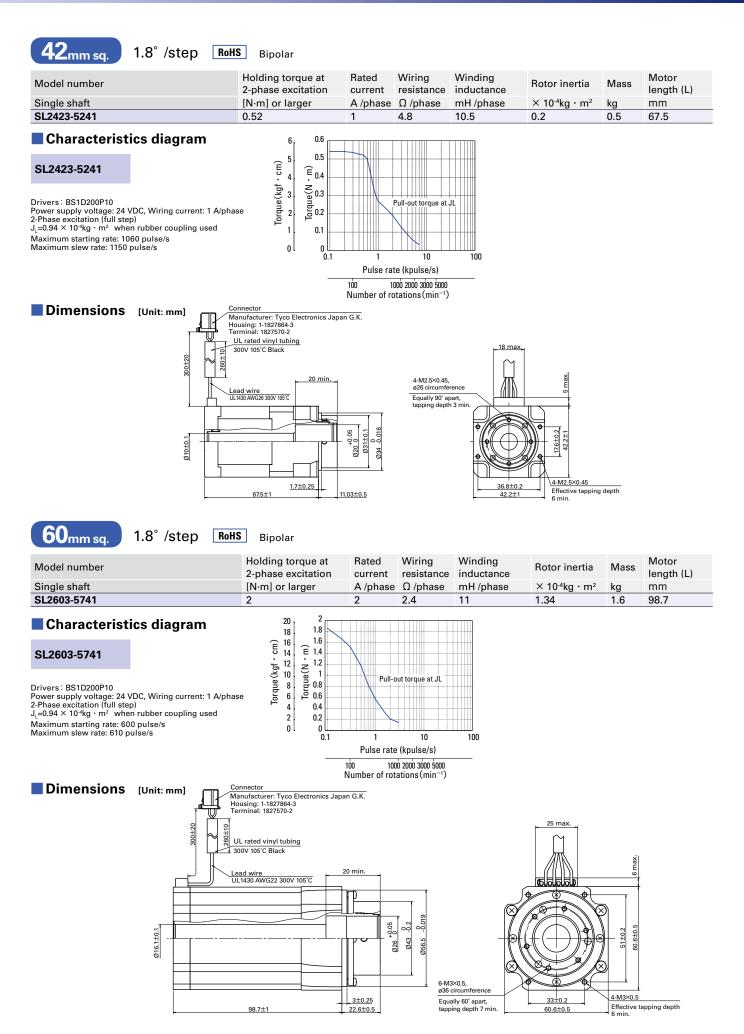
If to be used for driving circular tables or the like,

for which large load inertia is exerted on the motor,

The large allowable thrust load enables the direct mounting of load tables to the motor. Conventional pulley and belt, or gear mechanisms can be simplified, eliminating the backlash. It is suitable for the direct driving of index tables and other likes.

Conventionally

Motor was unable to directly support the large table weight, and the table has to be indirectly driven with pulley and timing belt. Reference value with the following conditions: Circular table with diameter 300 mm, thickness 6 mm, made of plastic, 90° index positioning in 1 sec.



Heavy-duty hollow shaft stepping motor Is capable of directly supporting the large load. The mechanism is simplified, and sensorless positioning is enabled as well.

SANMOTION for Food Machinery

IP65 Rated Splash and Dust Proof Stepping Motors

Waterproof, Dustproof
2-Phase

Features

These IP65 rated motors* excel in water and dust resistance, and can be safely used inside food processing machines that deal

with water and powders.

*Except for the shaft and the cable end parts. Ingress Protection (IP Code) is defined in a standard IEC (International Electrotechnical Commission) 60529:2010.

Lineup 🖉

56mm sq.,

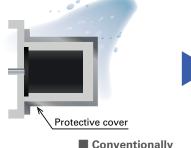
Compatible drivers

Model no.: BS1D200P10 (DC input) \rightarrow p. 10 Operating current selection switch setting: 0 (2 A/phase)

Safety standards

CE and UL-certified

Options

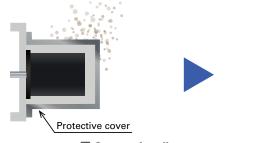

Extension cable for driver and motor communication Model no. 1m : F2C02M0100A 2m : F2C02M0200A 3m : F2C02M0300A

Precautions on use

- The shaft and cable parts are not under IP65 protection. Please take measures such as sealing for those parts.
- Brakes, encoders, and oilseals can be optionally equipped. Contact us for details.
 Food grade grease is available as an option for bearing grease. Contact us for details.
- · Please keep the length of extension cable between motor and driver no longer than 3 m, considering voltage drops.

Waterproof performance

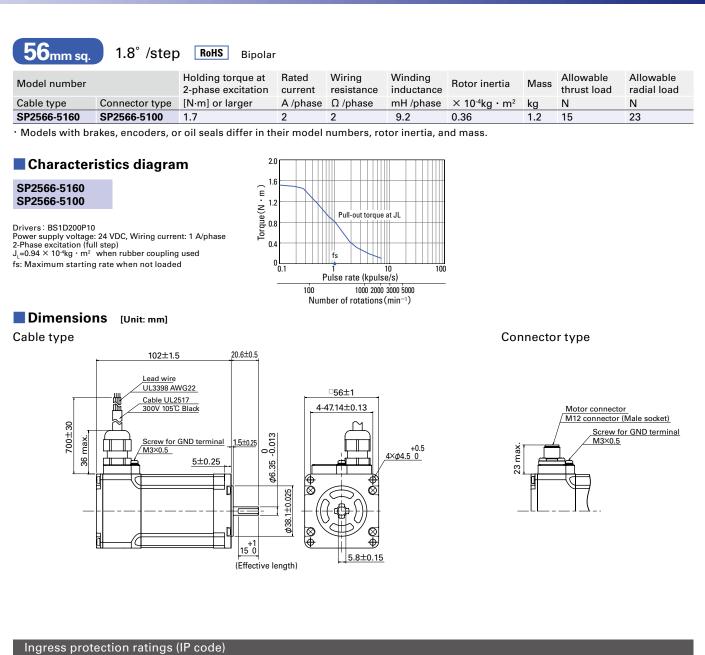
This motor can operate normally even when exposed to splash water because of its waterproof structure, eliminating the need for protective covers.


Conventionally
Protective cover was necessary
to protect the motor against water.

■ IP65 rated protection motor Can be used without protective cover with its high waterproof performance.

Protection against dust

This motor can be used with no problem inside the food processing equipment that deal with powders.



Conventionally Protective cover was necessary to protect the motor against fine particles such as powders.

■ IP65 rated protection motor Can be used without a protective cover with its high dustproof performance.

SANMOTION for Food Machinery

Definition of Ingress Protection (IP Code)

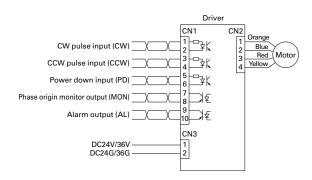
- Second digit: Protection against water

First digit: Protection against solid objects and access to hazardous parts

First digit	Description	Second digit	Des
0	No protection	0	No
1	Protection against solid objects of 50 mm or larger	1	Pro
2	Protection against solid objects of 12.5 mm or larger	2	Prot
3	Protection against solid objects of 2.5 mm or larger	3	Pro
4	Protection against solid objects of 1 mm or larger	4	Pro
5	Protection against a level of dust that could hinder operation or impair safety	5	Pro
6	Complete protection against dust	6	Pro

Ingress Protection (IP Code) is defined as above in a standard IEC (International Electrotechnical Commission) 60529* "Degrees of protection provided by enclosures (IP Code)" . *IEC 60529:2010

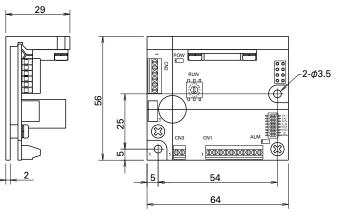
Second digit	Description			
0	No protection			
1	Protection against vertically dripping water			
2	Protection against dripping water up to 15° to vertical line			
3	Protection against spraying water			
4	Protection against splashing water			
5	Protection against low pressure water jets			
6	Protection against high pressure water jets			
7	Protection against temporary immersion in water			
8	Protection against submersion in water			


Compatible Driver RoHS Bipolar

General specifications

Gunu	ral specifications						
	Model no.	BS1D200P	10				
Basic	Input source	24 or 36 VI	36 VDC ± 10%				
informatio	on Source current	3 A	3 A				
	Mass (Weight)	0.09 kg	0.09 kg				
	Selection functions	Step angle,	Pulse input mode, Low-vi	bration mode, Standstill current, Operating current, Initial excitation phase			
Functions	Protective functions	Open phas	se, Main circuit power su	pply voltage drop			
	LED indicator	Power lam	p, Alarm indicator				
	Command pulse inpusional			stance: 220 Ω , High-level signal input voltage: 4.0 to 5.5 V, Low-level kimum input frequency: 150 kpulse/s			
1/0	Power down input sign		ler input type, Input resis signal input voltage: 4.0	stance: 220 Ω , to 5.5 V, Low-level signal input voltage: 0 to 0.5 V			
I/O signals	Phase origin monitor output signal		ector output by photocoupler ecification: Vceo = 40 V max., lc = 10 mA max.				
	Alarm output signal		ctor output by photocoup ecification: Vceo = 40 V m				
	Directives	Category	Standard	Name			
	Low-voltage directives	-	EN61010-1	-			
-		Emission	EN55011-A	Mains terminal disturbance voltage			
		Emission	EN55011-A	Electromagnetic radiation disturbance			
CE			EN61000-4-2	Electrostatic discharge immunity test			
(TÜV)	EMC directives		EN61000-4-3	RS (Radio-frequency amplitude modulated electromagnetic field) Radiated, radio-frequency, electromagnetic field immunity test			
		Immunity	EN61000-4-4	Electrical fast transient/burst immunity test			
			EN61000-4-6	Conducted disturbances Immunity to conducted disturbances, induced by radio-frequency fields			
	Acquired standards		Applicable standards	File no.			
UL	UL		111 5000	F170775			
ī	UL for Canada		– UL508C	E179775			

Connections and Signals


External wiring diagram

Applicable wire sizes

· · · · · · · · · · · · · · · · · · ·				
ltem	Wire sizes	Allowable wire length		
For power supply	AWG22 (0.3 mm ²)	2 m max.		
For I/O signals	AWG24 (0.2 mm ²) to AWG22 (0.3 mm ²)	2 m max.		
For motor	AWG22 (0.3 mm ²)	3 m min.		

Dimensions [Unit:mm]

Functions

Operating current selection rotary switch (RUN) The value of the motor operating current can be set.

Scale reading	0	1	2	3	4	5	6	7
Motor current (A)	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3
Scale reading	8	9	Α	В	С	D	E	F
Motor current (A)	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5

The factory setting is F (0.5 A).

Select the current value after checking the rated current of the motor to use.

2 Function selection DIP switches

You can select functions that are suitable for your system.

Factory settings OFF ON EX1 OFF EX2 OFF **Resolution: 8 divisions** EX3 OFF OFF F/R 2-Pulse input mode (CW, CCW pulse input) ACD1 OFF Standstill current: 40% of operating current OFF ACD2 LV OFF Micro-step operation EORG OFF Phase origin

1, Step angle selection (switches EX1, EX2, EX3) Selects the division number of the basic step angle.

EX1	EX2	EX3	Resolution
ON	ON	ON	1 division (FULL step)
OFF	ON	OFF	2 divisions
ON	OFF	OFF	4 divisions
OFF	OFF	OFF	8 divisions
OFF	OFF	ON	16 divisions

2, Input mode selection (F/R)

Selects pulse input modes	3.
---------------------------	----

F/R	Pulse input mode	
ON	1-Pulse input mode (CK, U/D)	
OFF	2-Pulse input mode (CW, CCW)	

3, Standstill current selection (ACD1, ACD2)

Select the value of the motor current at standstill.

ACD2	ACD1	Motor current
ON	ON	100% of operating current
ON	OFF	60% of operating current
OFF	ON	50% of operating current
OFF	OFF	40% of operating current

 Initial factory setting is 40% of the rated current value. Driver and motor should be operated at around 50% to reduce driver and motor heating.

4, Low-vibration mode selection (LV)

Provides low-vibration and smooth operation even with low resolution settings such as 1-division and 2-division.

LV	Initial excitation phase
ON	Low-vibration operation
OFF	Micro-step operation

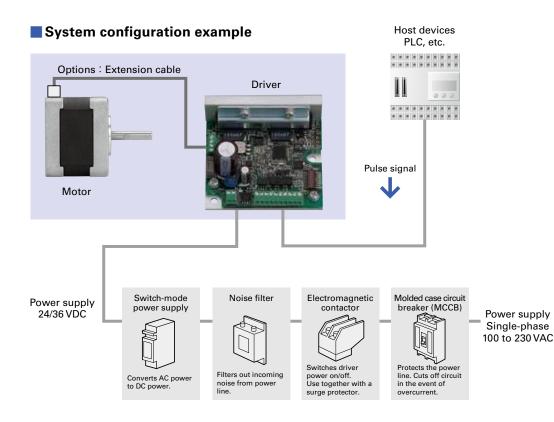
5, Excitation selection (EORG)

The excitation phase when power is turned on can be selected.

EORG	Initial excitation phase
ON	Excitation phase when power shut off
OFF	Phase origin

· By turning on the EORG, the excitation phase when power is turned off will be saved, which prevents shaft displacement when the power is turned on next time.

Summary of I/O signal specifications


Signal name	CN1 Pin no.	Function outlines
CW pulse input (CW)	1	When in "2-pulse input mode",
(Standard)	2	this signal inputs driving pulses that make the motor rotate in a CW direction.
Bules train input (CK)	1	When in "1-pulse input mode",
Pulse train input (CK)	2	this signal inputs driving pulses for motor rotation.
CCW pulse input (CCW)	3	When in "2-pulse input mode",
(Standard)	4	the signal inputs driving pulses that make the motor rotate in a CCW direction.
Rotational direction input (U/D)	3 4	When in "1-pulse input mode", the signal inputs the motor rotational direction. Internal photocoupler on … CW direction Internal photocoupler off … CCW direction
Power down input (PD)	5 6	Inputting a PD signal will cut off the current flowing to the motor. (Internal photocoupler on) ··· PD function in effect. (Internal photocoupler off) ··· PD function not in effect.
Phase origin monitor output (MON)	7 8	When the excitation phase is at the origin—the state when power is turned on—this output is activated. For FULL step, it is activated with 4 pulses; for HALF step, it is activated with 8 pulses.
Alarm output (AL)	9 10	If alarm circuit is activated inside the driver, it outputs an alarm signal to outside (with photocoupler on). After that, the stepping motor status turns to unexcited.

* As for the motor rotational directions, CW stands for the clockwise direction, and CCW stands for the counterclockwise direction, seen from output shaft side.

Options (sold separately)

Extension cable for driver and motor communication

Model no.	Cable length	Compatible motor	Compatible driver
F2C02M0100A	1 m	103H5210-5249 103H7126-5747 SL2423-5241 SL2603-5741	BS1D200P10
F2C02M0200A	2 m		
F2C02M0300A	3 m		
F2C01M0100A	1 m	SP2566-5100	
F2C01M0200A	2 m		
F2C01M0300A	3 m		

Precautions For Adoption

Failure to follow the precautions on the right may cause moderate injury and property damage, or in some circumstances, could lead to a serious accident. Always follow all listed precautions.

∕!∖Cautions

- Read the accompanying Instruction Manual carefully prior to using the product.
- If applying to medical devices and other equipment affecting people's lives, please contact us beforehand and take appropriate safety measures.
- If applying to equipment that can have significant effects on society and the general public, please contact us beforehand.
- Do not use this product in an environment where vibration is present, such as in a moving vehicle or shipping vessel. • Do not perform any retrofitting, re-engineering, or modification to this equipment.
- The products presented in this catalog are meant to be used for general industrial applications. If using for special applications related to aviation and space, nuclear power, electric power, submarine repeaters, etc., please contact us beforehand.

 $\ensuremath{\ast}\xspace{\mathsf{For}}$ any question or inquiry regarding the above, contact our Sales Department.

SANYO DENKI CO., LTD. 3-33-1 Minami-Otsuka, Toshima-ku, Tokyo 170-8451, Japan TEL: +81 3 5927 1020 http://www.sanyodenki.com

The names of companies and/or their products specified in this catalog are the trade names, and/or trademarks and/or registered trademarks of such respective companies. Specifications are subject to change without notice